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We introduce a supersymmetric unitary transformation, to diagonalize the multiphoton
Jaynes–Cummings model Hamiltonian based on supersymmetric quantum mechanics
theory, that includes any forms of intensity-dependent coupling and field nonlinearity.
On doing so, we obtain its eigenvalue and eigenstates, and the time evolution of state
vector.
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The interaction of a single two-level atom with the quantized electromagnetic
field of a lossless high-Q cavity is a central problem in cavity quantum electro-
dynamics. The simplest physical situation can be described by the well-known
Jaynes–Cummings model (Jaynes and Cummings, 1963). Many interesting non-
classical effects, such as collapses and revivals of atomic inversion, squeezing of
radiation field, etc., have been predicted theoretically and observed experimentally
in this model (Meystre, 1992; Raitelet al., 1994). Recently, Fan Hongyi proposed
that Jaynes–Cummings model can be solved by supersymmetric unitary transfor-
mation (Hongyi, 1997). It is no doubt that this new opinion will further enrich the
contents of supersymmetric quantum mechanics. In this paper, we will further use
the method to study the multiphoton Jaynes–Cummings models that include any
forms of intensity-dependent coupling and field nonlinearity.
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We consider the following Hamiltonian (rotating wave approximation)

H = ωN + 1

2
ω0σz+ R(N)+ g[a+k f (N)σ− + f (N)akσ+], (1)

whereω is the frequency of the single-mode quantized field,a anda+ are annihi-
lation and creation operators of the field, respectively;ω0 is the atomic transition
frequency;k can be any nonnegative integer;R and f are Hermitian operators
and they are any reasonable functions of the photon number operatorN = a+ a;
R(N) is field nonlinearity item; andgf(N) denotes intensity-dependent atom–field
coupling. This model is a fairly general form for single-mode Jaynes–Cummings
model. For instance, ifR(x) = 0, k = 1, and f (x) = 1/(x + 1), it reduces to the
generalized Jaynes–Cummings model (Fan and Fan, 1994). AsR= a+

2
a2 =

N(N − 1), k = 1, and f (x) = 1, it becomes the Kerr-type micromaser model
(Deb and Ray, 1993). It reduces to the Buck–Sukumar model asR(x) = 0, k = 1,
and f (x) = √x + 1 (Buck and Sukumar, 1980). If lettingR(x) = 0, k = 1, and
f (x) = √[x + 1]/(x + 1), ([x] = (1− qx)/(1− q)), we recover theq-deformed
Jaynes–Cummings models (Crnugeljet al., 1994).

To construct the supersymmetric unitary transformation operator, we first
define the supersymmetric transformation generators as follows:

Q = a+k f (N)σ−, (2a)

Q+ = f (N)akσ+, (2b)

N ′ = f 2(N)
(N + k)!

N!
σ++ + f 2(N − k)

N!

(N − k)!
σ−−, (2c)

where

σ++ = σ+σ− = 1

2
(1+ σz), σ−− = σ−σ+ = 1

2
(1− σz). (3)

It is easy to see that (N ′, Q+, Q) form supersymmetric generators and have super-
symmetric Lie algebra properties, i.e.

Q2 = Q+
2 = 0, [Q+, Q] = N ′σz, {Q, σz} = {Q+, σz} = 0,

N ′ = {Q, Q+}, [N ′, Q] = [N ′, Q+] = 0, (Q+ − Q)2 = −N ′, (4)

in which{ } denotes the anticommutation bracket. With the help of Eq. (2), Eq. (1)
can be written as

H = Mω − 1

2
kω + 1

2
1σz+ R(M − kσ++)+ g(Q+ + Q), (5)

where

M = N + kσ++, 1 = ω0− kω. (6)
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It can be proved thatM is constant of motion and commutes withN ′, Q, and
Q+, i.e.

bM, N ′c = [M, Q] = bM, Q+c = 0, (7)

Using the propertyσ 2
++ = σ++, we have

R(M − kσ++) =
∞∑

l=0

R(l )(0)

l !
(M − kσ++)l

=
∞∑

l=0

R(l )(0)

l !

[
Ml + lM l−1(−k)σ++

+ (l − 1)

2!
Ml−2(−1)2σ++ + · · ·

]

=
∞∑

l=0

R(l )(0)

l !
[Ml + (M − k)lσ++ − Mlσ++]

= R(M)+ [R(M − k)− R(M)]σ++ = R1(M)+ R2(M)σz, (8)

where

R1(M) = 1

2
[R(M)+ R(M − k)], (9)

R2(M) = 1

2
[R(M − k)− R(M)]. (10)

With the help of Eqs. (8)–(10), Eq. (5) can be rewritten as

H = H0+1(M)σz+ g(Q+ + Q), (11)

where

H0 = Mω − 1

2
kω + R1(M), (12)

1(M) = R2(M)+ 1

2
1. (13)

We have now put the general model into the form appropriate for using super-
symmetric unitary transformation. By the aid of supersymmetric transformation
generators defined above, we construct the supersymmetric unitary transformation
operator so that the Hamiltonian in Eq. (11) can be diagonalized. The supersym-
metric unitary transformation operator is defined as

T = exp

[
−θ

2
N ′−

1
2 (Q+ − Q)

]
, (14)
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whereθ is function of operatorsM to be determined later, andN ′−
1
2 is defined as

N ′−
1
2 =

[
f 2(N)

(N + k)!

N!

]− 1
2

σ++ +
[

f 2(N − k)
N!

(N − k)!

]− 1
2

σ−−. (15)

With the help of the operator formulaa f (N) = f (N + 1)a, a+ f (N + 1)=
f (N)a+, and Eq. (7), one can easily verify the following commutation relations[

N ′−
1
2 , Q

] = [N ′− 1
2 , Q+

] = [N ′− 1
2 , M

] = 0, (16)

[θ , Q] = [θ , Q+] = [N ′− 1
2 , θ

] = 0. (17)

Therefore, Eq. (14) can be expanded to the following form:

T = cos

(
θ

2

)
− sin

(
θ

2

)
N ′−

1
2 (Q+ − Q). (18)

From Eqs. (7), (16), and (17), we have

T−1H0T = H0, (19)

T−1(Q+ Q+)T = cos(θ )(Q+ Q+)+ sin(θ )
√

N ′σz, (20)

T−1σzT = cos(θ )σz− sin(θ )N ′−
1
2 (Q+ Q+). (21)

Therefore,

H ′ = T−1HT = H0+ g cos(θ )(Q+ Q+)+ g sin(θ )
√

N ′σz

+ 1(M)
[

cos(θ )σz− sin(θ )N ′−
1
2 (Q+ Q+)

]
. (22)

If we let

tg(θ ) = g
√

N ′

1(M)
, (23)

we can obtain the diagonalized Hamiltonian as follows

H ′ = T−1HT = H0+
√
12(M)+ N ′g2σz (24)

It should be pointed out that Eq. (23) should be understood in the sense of eigen-
values and eigenvalue equations for the operatorsM andN ′. The corresponding
eigenstates ofH ′ read

|9 ′1〉 = |n,+〉, |9 ′2〉 = |n+ k,−〉, (25)

and the eigenequations ofH ′ are given by

H ′|9 ′1〉 =
[(

n+ k

2

)
ω + R1(n+ k)+

√
12(n+ k)+ f 2(n)

(n+ k)!

n!
g2

]
|9 ′1〉,

(26)
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H ′|9 ′2〉 =
[(

n+ k

2

)
ω + R1(n+ k)−

√
12(n+ k)+ f 2(n)

(n+ k)!

n!
g2

]
|9 ′2〉,

(27)

where

1(n+ k) = 1

2
1+ R2(n+ k) = 1

2
[1+ R(n)− R(n+ k)]. (28)

Thus the eigenvalues and eigenstates of the HamiltonianH are, respectively,
given by

E± = E0(n)± E1(n), (29)

|91〉 = T |9 ′1〉 = cos

(
θ

2

)
|9 ′1〉 + sin

(
θ

2

)
|9 ′2〉, (30)

|92〉 = T |9 ′2〉 = cos

(
θ

2

)
|9 ′2〉 − sin

(
θ

2

)
|9 ′1〉, (31)

where

E0(n) =
(

n+ k

2

)
ω + R1(n+ k), (32)

E1(n) =
√
12(n+ k)+ f 2(n)

(n+ k)!

n!
g2, (33)

cos

(
θ

2

)
= 1√

2

√
1+ 1(n+ k)

E1(n)
, (34)

sin

(
θ

2

)
= 1√

2

√
1− 1(n+ k)

E1(n)
. (35)

It should be pointed out that the states|n,−〉 and (n ≤ k− 1), which are not
included in Eqs. (30) and (31), are also the eigenstates ofH .

Now, we use the eigenstates ofH to express the time evolution of wave func-
tion from arbitrary initial conditions. Denote by|9(0)〉 an arbitrary initial condi-
tion of the system. We can expand the initial state vector|9(0)〉 in the following
form:

|9(0)〉 =
∞∑

n=0

[C+n (0)|n,+〉 + C−n (0)|n+ k,−〉] +
k−1∑
n=0

Dn(0)|n,−〉, (36)
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whereC±n (0) and Dn(0) are complex coefficients satisfying the normalization
condition. The wave function at timet is then given by

|9(t)〉 = exp(−iHt)|9(0)〉

= T exp(−iH ′t)T−1
∞∑

n=0

[C+n (0)|n,+〉 + C−n (0)|n+ k,−〉]

+
k−1∑
n=0

Dn(t)|n,−〉, (37)

where

Dn(t) = exp

{
−i

[
nω + R(n)− 1

2
ω0

]
t

}
Dn(0). (38)

From Eqs. (24) and (25)–(27), we obtain

|9(0)〉 =
∞∑

n=0

[C+n (t)|n,+〉 + C−n (t)|n+ k,−〉] +
k−1∑
n=0

Dn(t)|n,−〉, (39)

where

C+n (t) = [ An(t)C+n (0)+ Bn(t)C−n (0)] exp[−i E0(n)t ], (40)

C−n (t) = [Bn(t)C+n (0)+ A∗n(t)C−n (0)] exp[−i E0(n)t ], (41)

An(t) = cos[E1(n)t ] − i1(n+ k)

E1(n)
sin[E1(n)t ], (42)

Bn(t) = −i
g f (n)

E1(n)

√
(n+ k)!

n!
sin[E1(n)t ]. (43)

In short, the main result of this paper is the construction of a supersym-
metric unitary transformation to diagonalize the Hamiltonian of the multiphoton
Jaynes–Cummings model that include any forms of intensity-dependent coupling
and field nonlinearity. This method, allowing a unified treatment of different in-
teraction models, seems to be particularly promising because of the possibility
to single out worth-noting physical features explicitly related to specific forms
of the atom–cavity mode coupling. Moreover, we have obtained the eigenvalue,
eigenstates, and time evolution of the state vector of the system. These general
results immediately give the solution to any specific forms of intensity-dependent
coupling and field nonlinearity, and will facilitate the subsequent investigations of
the nonlinear dynamical and statistical properties of the system.
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